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Lecture 4: Value Iteration

Scribe: David Millard

There is a recitation on smoothing on Tuesday 2018-09-04.

1 Review of MDPs

Recall that a Markov decision process (MDP) is defined as (S, A, T, R) where

• S is a discrete state space.

• A is a discrete action space.

• T : S× A → Π(S) is a transition function giving p(s′|a, s), the probability of tran-
sition to state s′ given action a and previous state s.

• R : S→ R is function mapping states to numerical rewards.

Given a policy π, we can compute the value of being in a given state s for a finite
time horizon

Vπ(s) = E

[
T

∑
t=0

R(st)

∣∣∣∣∣πt

]
(1)

or for an infinite time horizon

Vπ(s) = E

[
∞

∑
t=0

γtR(st)

∣∣∣∣∣πt

]
(2)

2 Example: Grid world

We consider the simple grid world given in Figure 1.
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Figure 1: Grid world

Our goal is to produce an optimal policy

π∗(s) = argmax
π

Vπ(s) (3)

Note

Why have a policy at all? Why not generate a plan and then execute it?

A policy gives you the option for closed loop control. If we end up in a state that
deviates from our plan’s expectations, we can still recover and act optimally.

We describe the value function for an optimal policy as follows

V∗(st) = max
a

[
R(st) + γ ∑

st+1

P(St+1|st, at)V∗(st+1)︸ ︷︷ ︸
expected

future
rewards

]
(4)

Intuitively, an optimal policy should optimize the immediate reward and the discounted
expected future rewards.

Note

We have n equations and n unknowns, so can’t we solve the system of equations?

No, because maxat is nonlinear, we must solve some other way.
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3 Value iteration algorithm

Algorithm 1: Value iteration algorithm
Result: π∗ an optimal policy (within ε)
V0(s)← 0;
repeat

for s ∈ S do
Vt+1(s)← maxa [R(s) + ∑s′ P(s′|s, a)Vt(s′)];

end for
until maxs |Vt+1(s)−Vt(s)| < ε;

Applying the value iteration algorithm to our grid world example, we get
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−0.04 −0.04 −1

−0.04 −0.04 −0.04 +1

(a) t = 1

−0.08 −0.08 −0.08 −0.08

−0.08 −0.08 −1

−0.08 −0.08 −0.68 +1

(b) t = 2 · · ·

0.71 0.66 0.61 0.39

0.76 0.66 −1

0.81 0.89 0.92 +1

(c) t = T

Figure 2: Value iteration on grid world

Note

What if −0.04 approaches 0? The robot will be extremely conservative, and run
into the wall instead of attempting to move near −1.

What if −0.04 approaches −5? The robot will go straight towards either −1 or +1,
since either are better than staying still.

4 Example: Robot cleaning a table

Consider a robot trying to clean a table by itself, and a human who can intervene. The
human can trust or mistrust the robot, which impacts their willingness to intervene.
Notably, this trust can change if the human observes the robot succeed at cleaning.

We define the following states (note this is not exactly an MDP, yet)

• SH = {Trust,¬Trust} defines the state of the human.
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• SW = Bottle × Glass = {TT, TR, TH, RT, RR, RH, HT, HR, HH} defines the state
of the world. TH means the bottle is on the Table and the glass is taken by the
Human.

• AR = {B, G} are the robot actions. The robot can either pick up the Bottle or the
Glass.

• AH = {Intervene,¬Intervene} are the human actions. The human can either inter-
vene or not.

The human will intervene based on their trust in the robot and based on whether the
robot attempts to grasp the bottle or the glass. The intervention probability is given by
the following conditional probability table.

sH
t aR

t P(aH
t = Intervene|sH

t , aH
t )

Trust B 0.1

Trust G 0.2

¬Trust B 0.3

¬Trust G 0.8

The world state transitions deterministically as though the robot or human always
succeeds at their actions. The following table gives two examples of the deterministic
transition.

sW
t aR

t aH
t sW

t+1

TT B Intervene HT
TT B ¬Intervene RT

...
...

The human’s trust in the robot can also change according to the following conditional
probability table.
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sH
t aR

t aH
t P(sH

t+1 = Trust|sH
t , aH

t , aR
t )

Trust B Intervene 1.0

Trust B ¬Intervene 1.0

¬Trust B ¬Intervene 0.8

¬Trust B ¬Intervene 0.9

We specify a sparse reward function where the robot is rewarded only for clearing
the glass or clearing both items.

R(RR) = 10
R(TR) = 5

R(∗) = 0

These specifications give us the following causal model of the world

sH
t aH

t aR
t sW

t

sH
t+1 sW

t+1

but we want something more similar to the traditional MDP graph

aR
t

st st+1

Recall

We do not include human actions in the graph because the robot cannot control
them.

so we define our state space S = SH × SW (|S| = 18), we can derive our transition table
T : S× AR → Π(S).

T(st+1|st, aR
t ) = P(sW

t+1, sH
t+1|aR

t , sW
t , sH

t )
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by marginalizing, we get

= ∑
aH

t

P(sW
t+1, sH

t+1, aH
t |aR

t , sW
t , sH

t )

= ∑
aH

t

P(sW
t+1, sH

t+1, |aR
t , sW

t , sH
t , aH

t )P(aH
t |sW

t , sH
t , aR

t )

since we have specified all causal ancestors, we see by conditional independence that

= ∑
aH

t

P(sW
t+1|aR

t , sW
t , sH

t , aH
t )P(sH

t+1|aR
t , sW

t , sH
t , aH

t )P(aH
t |sW

t , sH
t , aR

t )

= ∑
aH

t

P(sW
t+1|aR

t , sW
t , aH

t )P(sH
t+1|aR

t , sH
t , aH

t )P(aH
t |sH

t , aR
t )

The size of our matrix is |T| = |S× AR → Π(s)| = 18× 2× 18.
Applying value iteration to the MDP specification, we see

sW sH V1(s) V2(s) V3(s)

TT ¬Trust 0 1 4.76

TR ¬Trust 5 12 12

TH ¬Trust 0 0 0

RT ¬Trust 0 2 2

RR ¬Trust 10 10 10

RH ¬Trust 0 0 0

HT ¬Trust 0 0 0

HR ¬Trust 0 0 0

HH ¬Trust 0 0 0

TT Trust 0 4 11.2

TR Trust 5 14 14

TH Trust 0 0 0

RT Trust 0 8 8

RR Trust 10 10 10

RH Trust 0 0 0

HT Trust 0 0 0

HR Trust 0 0 0

HH Trust 0 0 0
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Notice that the robot develops and interesting policy. If the human doesn’t trust the
robot, the robot will pick up the bottle to increase trust before attempting to pick up the
glass.

As an example, we present the computation of V2(TT,¬Trust).

V2(TT,¬Trust) = max
aR

1


0+P(RT,¬Trust|TT,¬Trust,B)��

���
�: 0

V1(RT,Trust)+... ,
0+P(TR,Trust|TT,¬Trust,G)V1(TR,Trust)+

+P(TH,Trust|TT,¬Trust,G)���
���: 0

V1(TH,Trust)
+P(TH,¬Trust|TT,¬Trust,G)V1(TR,¬Trust)

+P(TH,¬Trust|TT,¬Trust,G)
���

���:
0

V1(TH,¬Trust)


So we are left with

P(TR, Trust|TT,¬Trust, G) =
���

���
���

���:
0

P(TR|TT, G, Intervene)P(Trust, |¬Trust, G, Intervene)P(Intervene|¬Trust, G)

+ P(TR|TT, G,¬Intervene)P(Trust, |¬Trust, G,¬Intervene)P(¬Intervene|¬Trust, G)

= 1× 0.9× 0.2 = 0.18

and

P(TR,¬Trust|TT,¬Trust, G) = P(TR|TT, G, Intervene)P(¬Trust, |¬Trust, G, Intervene)P(Intervene|¬Trust, G)

+ P(TR|TT, G,¬Intervene)P(¬Trust, |¬Trust, G,¬Intervene)P(¬Intervene|¬Trust, G)

= 0.02

So V2(TT,¬Trust) = 0.18× 5 + 0.02× 5 = 0.2× 5 = 1.

Note

The robot could try to pick up the glass twice, which is impossible. How do we
prevent this?

This is not modeled here, but could be handled by assigning a high negative value
to these type of impossible configurations.
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